Начисление процентов за дробное число лет

Достаточно обыденными являются финансовые контракты, заключаемые на период, отличающийся от целого числа лет. В этом случае проценты могут начисляться одним из двух методов:
• по схеме сложных процентов:


• по смешанной схеме (используется схема сложных процентов для целого числа лет и схема простых процентов - для дробной части года):


где w - целое число лет;
f - дробная часть года.
Поскольку f < 1, то (1 + f • r) > (1 + r)f, следовательно, наращенная сумма будет больше при использовании смешанной схемы. Можно показать, что при малых r наибольшая величина разности между (2.10.7) и (2.10.8) достигается при f 0,5.
Пример 2.22. Банк предоставил ссуду в размере 10 тыс. руб. на 30 месяцев под 30% годовых на условиях ежегодного начисления процентов. Какую сумму предстоит вернуть банку по истечении срока?
По формуле (2.10.7): Fn = 10 • (1 + 0,3)2+0,5 = 19,269 тыс. руб.
По формуле (2.10.8): Fn = 10 • (1 + 0,3)2 • (1 + 0,3 • 0,5)= 19,435 тыс. руб.
Таким образом, в условиях задачи смешанная схема начисления процентов более выгодна для банка.
Встречаются финансовые контракты, в которых начисление процентов осуществляется по внутригодовым подпериодам, а продолжительность общего периода действия контракта не равна целому числу подпериодов. В этом случае также возможно использование двух схем:
а) схема сложных процентов:


б) смешанная схема:


где w - целое число подпериодов в n годах;
f - дробная часть подпериода ;
m - количество начислений в году;
r - годовая ставка.
Обращаем внимание читателя на то, что в приведенных алгоритмах показатели w и f имеют разный смысл. Так, в формуле (2.10.9) w означает целое число лет в и годах, а f - дробную часть года и поэтому n = w + f. Однако в формуле (2.10.10) w означает целое число подпериодов в п годах, а f - дробную часть подпериода и поэтому n = (w + f)/m.
Иными словами, при пользовании этими формулами нужно отдавать себе отчет в том, о каком базисном периоде идет речь.
Пример 2.23. Банк предоставил ссуду в размере 120 тыс. руб. на 27 месяцев (т.е. 9 кварталов, или 2,25 года) под 16% годовых на условиях единовременного возврата основной суммы долга и начисленных процентов. Проанализировать, какую сумму предстоит вернуть банку при различных вариантах и схемах начисления процентов: а) годовое; б) полугодовое; в) квартальное.
а) Годовое начисление процентов
В этом случае продолжительность ссуды не является кратной продолжительности базисного периода, т.е. года. Поэтому возможно применение любой из схем, описываемых формулами (2.10.7) и (2.10.8) и значениями соответствующих параметров: n = 2,25; w = 2; f = 0,25; r = 0,16.
• При реализации схемы сложных процентов:


• При реализации смешанной схемы:


б) Полугодовое начисление процентов
В этом случае мы имеем место с ситуацией, когда начисление процентов осуществляется по внутригодовым подпериодам, а продолжительность общего периода действия контракта не равна целому числу подпериодов. Следовательно, нужно воспользоваться формулами (2.10.9) и (2.10.10), когда параметры формул имеют следующие значения: т = 2; w = 4; f = m • п - w = 2 • 2,25 - 4 = 0,5; r = 0,16.
• При реализации схемы сложных процентов:


• При реализации смешанной схемы:


в) Квартальное начисление процентов
В этом случае т = 2; w = 9; f = 0, т.е. продолжительность ссуды равна целому числу подпериодов. Поэтому формулы (2.10.9) и (2.10.10) дают один и тот же результат:
Fn = 120 • ( 1 + 0,04)9 = 170,8 тыс. руб.
Здесь фактически пользуемся обычной формулой наращения сложными процентами (2.10.3), в которой n = 9, а r = 0,16/4 = 0,04.
<< | >>
Источник: В.В. Ковалев, О.Н. Волкова. Анализ хозяйственной деятельности предприятия. 2002
Вы также можете найти интересующую информацию в электронной библиотеке Sci.House. Воспользуйтесь формой поиска:

Еще по теме Начисление процентов за дробное число лет:

  1. Непрерывное начисление процентов
  2. Декурсивный способ начисления процентов
  3. НАЧИСЛЕННЫЕ ПРОЦЕНТЫ
  4. Антисипативный способ (предварительный) начисления процентов
  5. Внутригодовые процентные начисления
  6. УСЛОВНО-НАЧИСЛЕННАЯ СТОИМОСТЬ
  7. 2.10.3. Процентные ставки и методы их начисления
  8. РАЗЛИЧНЫЕ БАНКОВСКИЕ НАЧИСЛЕНИЯ
  9. ПРОЦЕНТНОЕ ЧИСЛО
  10. ЧИСЛО ПОТРЕБИТЕЛЕЙ
  11. На 10 лет под 7 % годовых.
  12. НАЧИСЛЕННАЯ ЗАРАБОТНАЯ ПЛАТА